

Welcome to DenMune’s documentation!

	DenMune Clustering Algorithm
	A clustering algorithm that can find clusters of arbitrary size, shapes and densities in two-dimensions. Higher dimensions are first reduced to 2-D using the t-sne. The algorithm relies on a single parameter K (the number of nearest neighbors). The results show the superiority of DenMune. Enjoy the simplicty but the power of DenMune.

Note

This documentation associated with the paper “DenMune: Density peak based clustering using mutual nearest neighbors”

DOI: https://doi.org/10.1016/j.patcog.2020.107589

Source code is maintained at https://github.com/scikit-learn-contrib/denmune-clustering-algorithm

User Guide / Tutorials

	DenMune: A density-peak clustering algorithm
	Based on the paper

	Documentation:

	Watch it in action

	When less means more

	Installation and Usage
	Install It:

	Import It:

	Loading data

	Algorithm’s Parameters

	Features
	The Analyzer

	Noise Detection

	Validatation

	K-nearest Evolution

	The Scalability

	The Stability

	Reveal the propagation

	How to Run and Test
	Interact with the algorithm

	Repo2Docker Binder

	Kaggle workspace

	Google Research, CoLab

	How to cite
	Licensing

	Task List

Examples

	Iris Dataset

	Chameleon Dataset

	2D Shapes Datasets

	MNIST Dataset

Characteristics

	Noise Detection

	Clustering Propagation

	Clustering Propagation Snapshots

	Scalability

	Stability

	K-nearest Neighbor Evolution

Participate in Competitions

	Validate Your Results

	Trining MNIST Dataset

	Become a Kaggler: Get 97% on MNIST Dataset

Footnotes

DenMune: A density-peak clustering algorithm

DenMune a clustering algorithm that can find clusters of arbitrary size,
shapes and densities in two-dimensions. Higher dimensions are first
reduced to 2-D using the t-sne. The algorithm relies on a single
parameter K (the number of nearest neighbors). The results show the
superiority of the algorithm. Enjoy the simplicity but the power of
DenMune.

[image: PyPI Version][#1] [image: Launch notebook examples in Binder][#2] [image: Documentation Status][#3] [image: Launch notebook examples in Colaboratory, Google Research]
[image: Launch notebook examples in Kaggle, the workspace where data scientist meet][#4] [image: Elsevier, journal's article publisher][#5] [image: Research datasets at Mendeley][#6] [image: BSD 3-Clause “New” or “Revised” License"][#7] [image: CircleCI, continuous integration][#8]

Based on the paper

	Paper

	Journal

	Mohamed Abbas, Adel El-Zoghabi, Amin Ahoukry

	[image: scimagojr][#9]

	DenMune: Density peak based clustering using mutual
nearest neighbors

	In: Journal of Pattern Recognition, Elsevier,

	volume 109, number 107589, January 2021

	DOI:
https://doi.org/10.1016/j.patcog.2020
.107589[#10]

Documentation:

Documentation, including tutorials, are available on
https://denmune.readthedocs.io

[image: read the documentation][#11]

Watch it in action

This 30 seconds will tell you how a density-baased algorithm, DenMune
propagates:

[image: interact with the propagation][#12]

[image: Propagation in DenMune]

When less means more

Most calssic clustering algorithms fail in detecting complex where
clusters are of different size, shape, density, and being exist in noisy
data. Recently, a density-based algorithm named DenMune showed great
ability in detecting complex shapes even in noisy data. it can detect
number of clusters automatically, detect both pre-identified-noise and
post-identified-noise automatically and removing them.

It can achieve accuracy reach 100% in most classic pattern problems,
achieve 97% in MNIST dataset. A great advantage of this algorithm is
being single-parameter algorithm. All you need is to set number of
k-nearest neighbor and the algorithm will care about the rest. Being
Non-senstive to changes in k, make it robust and stable.

Keep in mind, the algorithm reduce any N-D dataset to only 2-D dataset
initially, so it is a good benefit of this algorithm is being always to
plot your data and explore it which make this algorithm a good candidate
for data exploration. Finally, the algorithm comes with neat package for
visualizing data, validating it and analyze the whole clustering
process.

Installation and Usage

Install It:

Simply install DenMune clustering algorithm using pip command from the
official Python repository

[image: PyPI Version][#13]

From the shell run the command

pip install denmune

From jupyter notebook cell run the command

!pip install denmune

Import It:

Once DenMune is installed, you just need to import it

from denmune import DenMune

Note

Please note that first denmune (the package) is in small letters, while DenMune (the class itself) has D and M in capital case while other letters are small.

Loading data

There are four possible cases of data:

	only train data without labels

	only labeld train data

	labeled train data in addition to test data without labels

	labeled train data in addition to labeled test data

#===
First scenario: train data without labels
==

data_path = 'datasets/denmune/chameleon/'
dataset = "t7.10k.csv"
data_file = data_path + dataset

train data without labels
X_train = pd.read_csv(data_file, sep=',', header=None)

knn = 39 # k-nearest neighbor, the only parameter required by the algorithm

dm = DenMune(train_data=X_train, k_nearest=knn)
labels, validity = dm.fit_predict(show_analyzer=False, show_noise=True)

This is an intutive dataset which has no groundtruth provided

[image: t710]

#===
Second scenario: train data with labels
==

data_path = 'datasets/denmune/shapes/'
dataset = "aggregation.csv"
data_file = data_path + dataset

train data with labels
X_train = pd.read_csv(data_file, sep=',', header=None)
y_train = X_train.iloc[:, -1]
X_train = X_train.drop(X_train.columns[-1], axis=1)

knn = 6 # k-nearest neighbor, the only parameter required by the algorithm

dm = DenMune(train_data=X_train, train_truth= y_train, k_nearest=knn)
labels, validity = dm.fit_predict(show_analyzer=False, show_noise=True)

Datset groundtruth

[image: aggregation groundtruth]

Datset as detected by DenMune at k=6

[image: aggregation train]

#===
Third scenario: train data with labels in addition to test data
==

data_path = 'datasets/denmune/pendigits/'
file_2d = data_path + 'pendigits-2d.csv'

train data with labels
X_train = pd.read_csv(data_path + 'train.csv', sep=',', header=None)
y_train = X_train.iloc[:, -1]
X_train = X_train.drop(X_train.columns[-1], axis=1)

test data without labels
X_test = pd.read_csv(data_path + 'test.csv', sep=',', header=None)
X_test = X_test.drop(X_test.columns[-1], axis=1)

knn = 50 # k-nearest neighbor, the only parameter required by the algorithm

dm = DenMune(train_data=X_train, train_truth= y_train,
 test_data= X_test,
 k_nearest=knn)
labels, validity = dm.fit_predict(show_analyzer=True, show_noise=True)

dataset groundtruth

[image: pendigits groundtruth]

dataset as detected by DenMune at k=50

[image: pendigits train]

test data as predicted by DenMune on training the dataset at k=50

[image: pendigits test]

Algorithm’s Parameters

	Parameters used within the initialization of the DenMune class

def __init__ (self,
 train_data=None, test_data=None,
 train_truth=None, test_truth=None,
 file_2d ='_temp_2d', k_nearest=10,
 rgn_tsne=False, prop_step=0,
):

	train_data:

	data used for training the algorithm

	default: None. It should be provided by the use, otherwise an
error will riase.

	train_truth:

	labels of training data

	default: None

	test_data:

	data used for testing the algorithm

	test_truth:

	labels of testing data

	default: None

	k_nearest:

	number of nearest neighbor

	default: 10. It should be provided by the user.

	rgn_tsn:

	when set to True: It will regenerate the reduced 2-D version of
the N-D dataset each time the algorithm run.

	when set to False: It will generate the reduced 2-D version of the
N-D dataset first time only, then will reuse the saved exist file

	default: True

	file_2d: name (include location) of file used save/load the reduced
2-d version

	if empty: the algorithm will create temporary file named
‘_temp_2d’

	default: _temp_2d

	prop_step:

	size of increment used in showing the clustering propagation.

	leave this parameter set to 0, the default value, unless you are
willing intentionally to enter the propagation mode.

	default: 0

	Parameters used within the fit_predict function:

def fit_predict(self,
 validate=True,
 show_plots=True,
 show_noise=True,
 show_analyzer=True
):

	validate:

	validate data on/off according to five measures integrated with
DenMUne (Accuracy. F1-score, NMI index, AMI index, ARI index)

	default: True

	show_plots:

	show/hide plotting of data

	default: True

	show_noise:

	show/hide noise and outlier

	default: True

	show_analyzer:

	show/hide the analyzer

	default: True

Features

The Analyzer

The algorithm provide an intutive tool called analyzer, once called it
will provide you with in-depth analysis on how your clustering results
perform.

[image: DenMune Analyzer]

Noise Detection

DenMune detects noise and outlier automatically, no need to any further
work from your side.

	It plots pre-identified noise in black

	It plots post-identified noise in light grey

You can set show_noise parameter to False.

let us show noise

m = DenMune(train_data=X_train, k_nearest=knn)
labels, validity = dm.fit_predict(show_noise=True)

let us show clean data by removing noise

m = DenMune(train_data=X_train, k_nearest=knn)
labels, validity = dm.fit_predict(show_noise=False)

	noisy data

	clean data

	[image: noisy data]

	[image: clean data]

Validatation

You can get your validation results using 3 methods

	by showing the Analyzer

	extract values from the validity returned list from fit_predict function

	extract values from the Analyzer dictionary

There are five validity measures built-in the algorithm, which are:

	ACC, Accuracy

	F1 score

	NMI index (Normalized Mutual Information)

	AMI index (Adjusted Mutual Information)

	ARI index (Adjusted Rand Index)

[image: validation snapshot]

K-nearest Evolution

The following chart shows the evolution of pre and post identified noise
in correspondence to increase of number of knn. Also, detected number of
clusters is analyzed in the same chart in relation with both types of
identified noise.

[image: knn evolution chart]

The Scalability

	data size

	time

	data size: 5000

	time: 2.3139 seconds

	data size: 10000

	time: 5.8752 seconds

	data size: 15000

	time: 12.4535 seconds

	data size: 20000

	time: 18.8466 seconds

	data size: 25000

	time: 28.992 seconds

	data size: 30000

	time: 39.3166 seconds

	data size: 35000

	time: 39.4842 seconds

	data size: 40000

	time: 63.7649 seconds

	data size: 45000

	time: 73.6828 seconds

	data size: 50000

	time: 86.9194 seconds

	data size: 55000

	time: 90.1077 seconds

	data size: 60000

	time: 125.0228 seconds

	data size: 65000

	time: 149.1858 seconds

	data size: 70000

	time: 177.4184 seconds

	data size: 75000

	time: 204.0712 seconds

	data size: 80000

	time: 220.502 seconds

	data size: 85000

	time: 251.7625 seconds

	data size: 100000

	time: 257.563 seconds

[image: noisy data chart]

The Stability

The algorithm is only single-parameter, even more it not sensitive to
changes in that parameter, k. You may guess that from the following
chart yourself. This is of greate benfit for you as a data exploration
analyst. You can simply explore the dataset using an arbitrary k. Being
Non-senstive to changes in k, make it robust and stable.

[image: DenMune Stability chart]

Reveal the propagation

one of the top performing feature in this algorithm is enabling you to
watch how your clusters propagate to construct the final output
clusters. just use the parameter ‘prop_step’ as in the following
example:

dataset = "t7.10k" #
data_path = 'datasets/denmune/chameleon/'

train file
data_file = data_path + dataset +'.csv'
X_train = pd.read_csv(data_file, sep=',', header=None)

from itertools import chain

Denmune's Paramaters
knn = 39 # number of k-nearest neighbor, the only parameter required by the algorithm

create list of differnt snapshots of the propagation
snapshots = chain(range(2,5), range(5,50,10), range(50, 100, 25), range(100,500,100), range(500,2000, 250), range(1000,5500, 500))

from IPython.display import clear_output
for snapshot in snapshots:
 print ("itration", snapshot)
 clear_output(wait=True)
 dm = DenMune(train_data=X_train, k_nearest=knn, rgn_tsne=False, prop_step=snapshot)
 labels, validity = dm.fit_predict(show_analyzer=False, show_noise=False)

How to Run and Test

Interact with the algorithm

[image: chameleon datasets][#14]

This notebook allows you interact with the algorithm in many asspects:

	you can choose which dataset to cluster (among 4 chameleon datasets)

	you can decide which number of k-nearest neighbor to use

	show noise on/off; thus you can invesitigate noise detected by the
algorithm

	show analyzer on/off

Repo2Docker Binder

Launch Examples in Repo2Docker Binder

Simply use our repo2docker offered by mybinder.org, which encapsulate
the algorithm and all required data in one virtual machine instance.
All jupter notebooks examples found in this repository will be also
available to you in action to practice in this respo2docer. Thanks
mybinder.org, you made it possible!

[image: Launch notebook examples in Binder][#15]

Kaggle workspace

Launch each Example in Kaggle workspace

If you are a kaggler like me, then Kaggle, the best workspace where
data scientist meet, should fit you to test the algorithm with great
experince.

	Dataset

	Kaggle URL

	When less means more - kaggle

	[image: When less means more - kaggle][#16]

	Non-groundtruth datasets -
kaggle

	[image: Non-groundtruth datasets][#17]

	2D Shape datasets - kaggle

	[image: 2D Shape datasets - kaggle][#18]

	MNIST dataset kaggle

	[image: MNIST dataset - kaggle][#19]

	Iris dataset kaggle

	[image: iris dataset - kaggle][#20]

	Training MNIST to get 97%

	[image: Training MNIST to get 97%][#21]

	Noise detection - kaggle

	[image: Noise detection - kaggle][#22]

	Validation - kaggle

	[image: Validation - kaggle][#23] |

	The beauty of propagation -
kaggle

	[image: The beauty of propagation - kaggle][#24]

	The beauty of propagation part2
- kaggle

	[image: The beauty of propagation part 2 - kaggle][#25]

	Snapshots of propagation -kaggle

	[image: The beauty of propagation - kaggle][#26]

	Scalability kaggle

	[image: Scalability - kaggle][#27]

	Stability - kaggle

	[image: Stability - kaggle][#28]

	k-nearest-evolution - kaggle

	[image: k-nearest-evolution - kaggle][#29]

Google Research, CoLab

Launch each Example in Google Research, CoLab

Need to test examples one by one, then here another option. Use colab
offered by google research to test each example individually.

Here is a list of Google CoLab URL to use the algorithm
interactively

	Dataset

	CoLab URL

	How to use it - colab

	[image: How to use it - colab][#30]

	Chameleon datasets - colab

	[image: Chameleon datasets - colab][#31]

	2D Shape datasets - colab

	[image: 2D Shape datasets - colab][#32]

	MNIST dataset - colab

	[image: MNIST dataset - colab][#33]

	iris dataset - colab

	[image: iris dataset - colab][#34]

	Get 97% by training MNIST
dataset - colab

	[image: Get 97% by training MNIST dataset - colab][#35]

	Non-groundtruth datasets - colab

	[image: Non-groundtruth datasets - colab][#36]

	Noise detection - colab

	[image: Noise detection - colab][#37]

	validation - colab

	[image: Validation - colab][#38]

	How it propagates - colab

	[image: How it propagates - colab][#39]

	Snapshots of propagation - colab

	[image: snapshots of the propagation - colab][#40]

	Scalability - colab

	[image: Scalability - colab][#41]

	Stability vs number of nearest
neighbors - colab

	[image: Stability vs number of nearest neighbors - colab][#42]

	k-nearest-evolution - colab

	[image: k-nearest-evolution - colab][#43]

How to cite

If you have used this codebase in a scientific publication and wish to
cite it, please use the Journal of Pattern Recognition
article[#44]

Mohamed Abbas McInnes, Adel El-Zoghaby, Amin Ahoukry, *DenMune: Density peak based clustering using mutual nearest neighbors*
In: Journal of Pattern Recognition, Elsevier, volume 109, number 107589.
January 2021

@article{ABBAS2021107589,
title = {DenMune: Density peak based clustering using mutual nearest neighbors},
journal = {Pattern Recognition},
volume = {109},
pages = {107589},
year = {2021},
issn = {0031-3203},
doi = {https://doi.org/10.1016/j.patcog.2020.107589},
url = {https://www.sciencedirect.com/science/article/pii/S0031320320303927},
author = {Mohamed Abbas and Adel El-Zoghabi and Amin Shoukry},
keywords = {Clustering, Mutual neighbors, Dimensionality reduction, Arbitrary shapes, Pattern recognition, Nearest neighbors, Density peak},
abstract = {Many clustering algorithms fail when clusters are of arbitrary shapes, of varying densities, or the data classes are unbalanced and close to each other, even in two dimensions. A novel clustering algorithm “DenMune” is presented to meet this challenge. It is based on identifying dense regions using mutual nearest neighborhoods of size K, where K is the only parameter required from the user, besides obeying the mutual nearest neighbor consistency principle. The algorithm is stable for a wide range of values of K. Moreover, it is able to automatically detect and remove noise from the clustering process as well as detecting the target clusters. It produces robust results on various low and high dimensional datasets relative to several known state of the art clustering algorithms.}
}

Licensing

The DenMune algorithm is 3-clause BSD licensed. Enjoy.

[image: BSD 3-Clause “New” or “Revised” License"][#45]

Task List

	☒ Update Github with the DenMune sourcode

	☒ create repo2docker repository

	☒ Create pip Package

	☒ create CoLab shared examples

	☒ create documentation

	☒ create Kaggle shared examples

	☐ create conda package

Footnotes

[#1]
https://pypi.org/project/denmune/

[#2]
https://mybinder.org/v2/gh/egy1st/denmune-clustering-algorithm/HEAD

[#3]
https://denmune.readthedocs.io/en/latest/?badge=latest

[#4]
https://www.kaggle.com/egyfirst/denmune-clustering-iris-dataset?scriptVersionId=84775816

[#5]
https://www.sciencedirect.com/science/article/abs/pii/S0031320320303927

[#6]
https://data.mendeley.com/datasets/b73cw5n43r/4

[#7]
https://choosealicense.com/licenses/bsd-3-clause/

[#8]
https://circleci.com/gh/egy1st/denmune-clustering-algorithm/tree/main

[#9]
https://www.scimagojr.com/journalsearch.php?q=24823&tip=sid&clean=0

[#10]
https://doi.org/10.1016/j.patcog.2020.107589

[#11]
https://denmune.readthedocs.io/en/latest/?badge=latest

[#12]
https://colab.research.google.com/drive/1o-tP3uvDGjxBOGYkir1lnbr74sZ06e0U?usp=sharing

[#13]
https://pypi.org/project/denmune/

[#14]
https://colab.research.google.com/drive/1EUROd6TRwxW3A_XD3KTxL8miL2ias4Ue?usp=sharing

[#15]
https://mybinder.org/v2/gh/egy1st/denmune-clustering-algorithm/HEAD

[#16]
https://www.kaggle.com/egyfirst/when-less-means-more

[#17]
https://www.kaggle.com/egyfirst/detecting-non-groundtruth-datasets

[#18]
https://www.kaggle.com/egyfirst/detection-of-2d-shape-datasets

[#19]
https://www.kaggle.com/egyfirst/get-97-using-simple-yet-one-parameter-algorithm

[#20]
https://www.kaggle.com/egyfirst/denmune-clustering-iris-dataset

[#21]
https://www.kaggle.com/egyfirst/training-mnist-dataset-to-get-97

[#22]
https://www.kaggle.com/egyfirst/noise-detection

[#23]
https://www.kaggle.com/egyfirst/validate-in-5-built-in-validity-insexes

[#24]
https://www.kaggle.com/egyfirst/the-beauty-of-clusters-propagation

[#25]
https://www.kaggle.com/egyfirst/the-beauty-of-propagation-part2

[#26]
https://www.kaggle.com/egyfirst/the-beauty-of-clusters-propagation

[#27]
https://www.kaggle.com/egyfirst/scalability-vs-speed

[#28]
https://www.kaggle.com/egyfirst/stability-vs-number-of-nearest-neighbor

[#29]
https://www.kaggle.com/egyfirst/k-nearest-evolution

[#30]
https://colab.research.google.com/drive/1J_uKdhZ3z1KeY0-wJ7Ruw2PZSY1orKQm

[#31]
https://colab.research.google.com/drive/1EUROd6TRwxW3A_XD3KTxL8miL2ias4Ue?usp=sharing

[#32]
https://colab.research.google.com/drive/1EaqTPCRHSuTKB-qEbnWHpGKFj6XytMIk?usp=sharing

[#33]
https://colab.research.google.com/drive/1a9FGHRA6IPc5jhLOV46iEbpUeQXptSJp?usp=sharing

[#34]
https://colab.research.google.com/drive/1nKql57Xh7xVVu6NpTbg3vRdRg42R7hjm?usp=sharing

[#35]
https://colab.research.google.com/drive/1NeOtXEQY94oD98Ufbh3IhTHnnYwIA659

[#36]
https://colab.research.google.com/drive/1d17ejQ83aUy0CZIeQ7bHTugSC9AjJ2mU?usp=sharing

[#37]
https://colab.research.google.com/drive/1Bp3c-cJfjLWxupmrBJ_6Q4-nqIfZcII4

[#38]
https://colab.research.google.com/drive/13_EVaQOv_QiNmQiMWJAcFFHPJHGCrQLe

[#39]
https://colab.research.google.com/drive/1o-tP3uvDGjxBOGYkir1lnbr74sZ06e0U?usp=sharing

[#40]
https://colab.research.google.com/drive/1vPXNKa8Rf3TnqDHSD3YSWl3g1iNSqjl2?usp=sharing

[#41]
https://colab.research.google.com/drive/1d55wkBndLLapO7Yx1ePHhE8mL61j9-TH?usp=sharing

[#42]
https://colab.research.google.com/drive/17VgVRMFBWvkSIH1yA3tMl6UQ7Eu68K2l?usp=sharing

[#43]
https://colab.research.google.com/drive/1DZ-CQPV3WwJSiaV3-rjwPwmXw4RUh8Qj

[#44]
https://www.sciencedirect.com/science/article/abs/pii/S0031320320303927

[#45]
https://choosealicense.com/licenses/bsd-3-clause/

[#46]
https://pypi.org/project/denmune/

[#47]
https://mybinder.org/v2/gh/egy1st/denmune-clustering-algorithm/HEAD

[#48]
https://denmune.readthedocs.io/en/latest/?badge=latest

[#49]
https://www.kaggle.com/egyfirst/denmune-clustering-iris-dataset?scriptVersionId=84775816

[#50]
https://www.sciencedirect.com/science/article/abs/pii/S0031320320303927

[#51]
https://data.mendeley.com/datasets/b73cw5n43r/4

[#52]
https://choosealicense.com/licenses/bsd-3-clause/

[#53]
https://circleci.com/gh/egy1st/denmune-clustering-algorithm/tree/main

[#54]
https://www.scimagojr.com/journalsearch.php?q=24823&tip=sid&clean=0

[#55]
https://denmune.readthedocs.io/en/latest/?badge=latest

[#56]
https://colab.research.google.com/drive/1o-tP3uvDGjxBOGYkir1lnbr74sZ06e0U?usp=sharing

[#57]
https://colab.research.google.com/drive/1EUROd6TRwxW3A_XD3KTxL8miL2ias4Ue?usp=sharing

[#58]
https://www.kaggle.com/egyfirst/when-less-means-more

[#59]
https://www.kaggle.com/egyfirst/detecting-non-groundtruth-datasets

[#60]
https://www.kaggle.com/egyfirst/detection-of-2d-shape-datasets

[#61]
https://www.kaggle.com/egyfirst/get-97-using-simple-yet-one-parameter-algorithm

[#62]
https://www.kaggle.com/egyfirst/denmune-clustering-iris-dataset

[#63]
https://www.kaggle.com/egyfirst/training-mnist-dataset-to-get-97

[#64]
https://www.kaggle.com/egyfirst/noise-detection

[#65]
https://www.kaggle.com/egyfirst/the-beauty-of-clusters-propagation

[#66]
https://www.kaggle.com/egyfirst/the-beauty-of-propagation-part2

[#67]
https://www.kaggle.com/egyfirst/scalability-vs-speed

[#68]
https://www.kaggle.com/egyfirst/stability-vs-number-of-nearest-neighbor

[#69]
https://www.kaggle.com/egyfirst/k-nearest-evolution

[#70]
https://colab.research.google.com/drive/1J_uKdhZ3z1KeY0-wJ7Ruw2PZSY1orKQm

[#71]
https://colab.research.google.com/drive/1EUROd6TRwxW3A_XD3KTxL8miL2ias4Ue?usp=sharing

[#72]
https://colab.research.google.com/drive/1EaqTPCRHSuTKB-qEbnWHpGKFj6XytMIk?usp=sharing

[#73]
https://colab.research.google.com/drive/1a9FGHRA6IPc5jhLOV46iEbpUeQXptSJp?usp=sharing

[#74]
https://colab.research.google.com/drive/1nKql57Xh7xVVu6NpTbg3vRdRg42R7hjm?usp=sharing

[#75]
https://colab.research.google.com/drive/1NeOtXEQY94oD98Ufbh3IhTHnnYwIA659

[#76]
https://colab.research.google.com/drive/1d17ejQ83aUy0CZIeQ7bHTugSC9AjJ2mU?usp=sharing

[#77]
https://colab.research.google.com/drive/1Bp3c-cJfjLWxupmrBJ_6Q4-nqIfZcII4

[#78]
https://colab.research.google.com/drive/1o-tP3uvDGjxBOGYkir1lnbr74sZ06e0U?usp=sharing

[#79]
https://colab.research.google.com/drive/1vPXNKa8Rf3TnqDHSD3YSWl3g1iNSqjl2?usp=sharing

[#80]
https://colab.research.google.com/drive/1d55wkBndLLapO7Yx1ePHhE8mL61j9-TH?usp=sharing

[#81]
https://colab.research.google.com/drive/17VgVRMFBWvkSIH1yA3tMl6UQ7Eu68K2l?usp=sharing

[#82]
https://colab.research.google.com/drive/1DZ-CQPV3WwJSiaV3-rjwPwmXw4RUh8Qj

[#83]
https://www.kaggle.com/egyfirst/validate-in-5-built-in-validity-insexes

[#84]
https://colab.research.google.com/drive/13_EVaQOv_QiNmQiMWJAcFFHPJHGCrQLe

Iris Dataset

import pandas as pd
import numpy as np
import time
import os.path

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

clone datasets from our repository datasets
if not os.path.exists('datasets'):
 !git clone https://github.com/egy1st/datasets

Cloning into 'datasets'...
remote: Enumerating objects: 57, done.

 Chameleon Dataset

Chameleon Dataset

import pandas as pd
import time
import os.path

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

clone datasets from our repository datasets
if not os.path.exists('datasets'):
 !git clone https://github.com/egy1st/datasets

Cloning into 'datasets'...
remote: Enumerating objects: 52, done.

 2D Shapes Datasets

2D Shapes Datasets

import pandas as pd
import time
import os.path

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

clone datasets from our repository datasets
if not os.path.exists('datasets'):
 !git clone https://github.com/egy1st/datasets

Cloning into 'datasets'...
remote: Enumerating objects: 52, done.

 MNIST Dataset

MNIST Dataset

import pandas as pd
import numpy as np
import time
import os.path

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

clone datasets from our repository datasets
if not os.path.exists('datasets'):
 !git clone https://github.com/egy1st/datasets

Cloning into 'datasets'...
remote: Enumerating objects: 52, done.

 Noise Detection

Noise Detection

import pandas as pd
import time
import os.path

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

clone datasets from our repository datasets
if not os.path.exists('datasets'):
 !git clone https://github.com/egy1st/datasets

Cloning into 'datasets'...
remote: Enumerating objects: 63, done.

 Clustering Propagation

Clustering Propagation

import pandas as pd
import time
import os.path
import glob

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

clone datasets from our repository datasets
if not os.path.exists('datasets'):
 !git clone https://github.com/egy1st/datasets

Cloning into 'datasets'...
remote: Enumerating objects: 52, done.

 Clustering Propagation Snapshots

Clustering Propagation Snapshots

import pandas as pd
import time
import os.path
import glob

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

clone datasets from our repository datasets
if not os.path.exists('datasets'):
 !git clone https://github.com/egy1st/datasets

Cloning into 'datasets'...
remote: Enumerating objects: 52, done.

 Scalability

Scalability

from sklearn import cluster, datasets
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
import os.path

import warnings
warnings.filterwarnings('ignore')

install DenMune clustering algorithm using pip command from the offecial Python repository, PyPi
from https://pypi.org/project/denmune/
!pip install denmune

then import it
from denmune import DenMune

Denmune's Paramaters
knn = 25 # k-nearest neighbor, the only parameter required by the algorithm
data_scale = []

for n in range(1000, 100000, 1000):
 n_samples = n
 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)

 data= noisy_circles[0]
 data_labels = noisy_circles[1]
 dm = DenMune(train_data=data, k_nearest=knn, rgn_tsne=True)
 labels, validity = dm.fit_predict(show_noise=True, show_analyzer=False, show_plots=False)
 time_exec = dm.analyzer['exec_time']['DenMune']
 data_scale.append([n, time_exec])

 print('data size:',n , 'time:' , round(time_exec,4), 'seconds')

data size: 1000 time: 0.4518 seconds
data size: 2000 time: 0.93 seconds
data size: 3000 time: 1.3754 seconds
data size: 4000 time: 2.0891 seconds
data size: 5000 time: 2.8772 seconds
data size: 6000 time: 4.5046 seconds
data size: 7000 time: 5.7184 seconds
data size: 8000 time: 4.836 seconds
data size: 9000 time: 7.793 seconds
data size: 10000 time: 8.3138 seconds
data size: 11000 time: 8.7401 seconds
data size: 12000 time: 9.8531 seconds
data size: 13000 time: 11.2796 seconds
data size: 14000 time: 13.4036 seconds
data size: 15000 time: 16.6113 seconds
data size: 16000 time: 14.4252 seconds
data size: 17000 time: 20.697 seconds
data size: 18000 time: 18.1152 seconds
data size: 19000 time: 22.1096 seconds
data size: 20000 time: 25.8013 seconds
data size: 21000 time: 26.6907 seconds
data size: 22000 time: 27.0235 seconds
data size: 23000 time: 27.3918 seconds
data size: 24000 time: 38.0108 seconds
data size: 25000 time: 41.3266 seconds
data size: 26000 time: 36.7593 seconds
data size: 27000 time: 42.6916 seconds
data size: 28000 time: 41.0344 seconds
data size: 29000 time: 42.878 seconds
data size: 30000 time: 50.9385 seconds
data size: 31000 time: 51.326 seconds
data size: 32000 time: 54.6266 seconds
data size: 33000 time: 50.0233 seconds
data size: 34000 time: 59.8251 seconds
data size: 35000 tim